796 research outputs found

    Observation of Spontaneous Brillouin Cooling

    Full text link
    While radiation-pressure cooling is well known, the Brillouin scattering of light from sound is considered an acousto-optical amplification-only process. It was suggested that cooling could be possible in multi-resonance Brillouin systems when phonons experience lower damping than light. However, this regime was not accessible in traditional Brillouin systems since backscattering enforces high acoustical frequencies associated with high mechanical damping. Recently, forward Brillouin scattering in microcavities has allowed access to low-frequency acoustical modes where mechanical dissipation is lower than optical dissipation, in accordance with the requirements for cooling. Here we experimentally demonstrate cooling via such a forward Brillouin process in a microresonator. We show two regimes of operation for the Brillouin process: acoustical amplification as is traditional, but also for the first time, a Brillouin cooling regime. Cooling is mediated by an optical pump, and scattered light, that beat and electrostrictively attenuate the Brownian motion of the mechanical mode.Comment: Supplementary material include

    Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    Get PDF
    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed

    Dynamics of SNARE Assembly and Disassembly during Sperm Acrosomal Exocytosis

    Get PDF
    The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperm's single vesicle—the acrosome—is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca(2+) chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca(2+) entry into the cytoplasm, Rab3 is activated and triggers NSF/α-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/α-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP)–specific neurotoxins. Ca(2+) must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis

    Openspritzer: an open hardware pressure ejection system for reliably delivering picolitre volumes

    Get PDF
    The ability to reliably and precisely deliver picolitre volumes is an important component of biological research. Here we describe a high-performance, low-cost, open hardware pressure ejection system (Openspritzer), which can be constructed from off the shelf components. The device is capable of delivering minute doses of reagents to a wide range of biological and chemical systems. In this work, we characterise the performance of the device and compare it to a popular commercial system using twophoton fluorescence microscopy. We found that Openspritzer provides the same level of control over delivered reagent dose as the commercial system. Next, we demonstrate the utility of Openspritzer in a series of standard neurobiological applications. First, we used Openspritzer to deliver precise amounts of reagents to hippocampal neurons to elicit time- and dose-precise responses on neuronal voltage. Second, we used Openspritzer to deliver infectious viral and bacterial agents to living tissue. This included viral transfection of hippocampal interneurons with channelrhodopsin for the optogenetic manipulation of hippocampal circuitry with light. We anticipate that due to its high performance and low cost Openspritzer will be of interest to a broad range of researchers working in the life and physical sciences

    Actual and preferred contraceptive sources among young people: findings from the British National Survey of Sexual Attitudes and Lifestyles

    Get PDF
    OBJECTIVE: To describe actual and preferred contraceptive sources among young people in Britain and whether discordance between these is associated with markers of sexual risk behaviour or poor sexual health. DESIGN: Cross-sectional probability sample survey. SETTING: British general population. PARTICIPANTS: 3869 men and women aged 16-24 years interviewed for the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) between 2010 and 2012. MAIN OUTCOME MEASURES: Reported source of contraceptive method(s) and preferred source if all were available and easily accessible. RESULTS: Of the 75% of young people (aged 16-24) who were heterosexually active (1619 women, 1233 men), >86% reported obtaining contraceptives in the past year. Most common sources were general practice (women, 63%) and retail (men, 60%): using multiple sources was common (women 40%, men 45%). Healthcare sources were preferred by 81% of women and 57% of men. Overall, 32% of women and 39% of men had not used their preferred source. This discordance was most common among men who preferred general practice (69%) and women who preferred retail (52%). Likelihood of discordance was higher among women who usually used a less effective contraceptive method or had an abortion. It was less likely among men who usually used a less effective method of contraception and men who were not in a steady relationship. CONCLUSIONS: Most young people in Britain obtained contraception in the past year but one-third had not used their preferred source. Healthcare sources were preferred. Discordance was associated with using less effective contraception and abortion among young women. Meeting young people's preference for obtaining contraception from healthcare sources could improve uptake of effective contraception to reduce unwanted pregnancies

    Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications

    Full text link
    Due to ultra high quality factor (10610910^6-10^9), axisymmetric optical microcavities are popular platforms for biosensing applications. It has been recently demonstrated that a microcavity biosensor can track a biodetection event as a function of its quality factor by using phase shift cavity ring down spectroscopy (PS-CRDS). However, to achieve maximum sensitivity, it is necessary to optimize the microcavity parameters for a given sensing application. Here, we introduce an improved finite element model which allows us to determine the optimized geometry for the PS-CRDS sensor. The improved model not only provides fast and accurate determination of quality factors but also determines the tunneling distance of axisymmetric resonators. The improved model is validated numerically, analytically, and experimentally.Comment: Published in Optics Express, April 2, 201

    Sperm from Hyh Mice Carrying a Point Mutation in αSNAP Have a Defect in Acrosome Reaction

    Get PDF
    Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of αSNAP has been detected in these animals. αSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had αSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type αSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant αSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of αSNAP, and that a fully functional αSNAP is necessary for acrosomal exocytosis, a key event in fertilization

    Explosive percolation yields highly-conductive polymer nanocomposites

    Get PDF
    Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties
    corecore